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The efficacy of biologically inspired genetic algorithms for optimization is now well established.
This article discusses the scope of using such an algorithm as an equation solver and presents
detailed calculations on the Pb-S-O vapor system containing a total of 20 species as a paradigm
case. This further increases the scope of applications of this evolutionary methodology in the
domain of phase equilibria research, and this methodology is expected to be more advantageous
than many other conventional techniques.

1. Introduction

Although a host of computational techniques are avail-
able for multicomponent equilibria studies[1,2] using a mac-
roscopic description of Gibbs free energy, they can be
broadly classified into two distinct categories: (1) the tech-
niques based upon free energy minimization and (2) the
techniques requiring solution of explicit equilibrium rela-
tionships, where the Gibbs phase rule determines the total
number of equilibrium constants needed for a deterministic
solution. Genetic algorithms,[3-7] a class of efficient opti-
mizers, have already been successfully applied to multicom-
ponent equilibria studies following the free energy minimi-
zation route.[8] However, to date, no published research
exists in which the genetic algorithms have been exploited
as nonlinear equation solvers pertinent to any phase equi-
libria problem that directly involves the equilibrium con-
stants. In this article, the authors demonstrate how this can
be done and present an analysis of the Pb-S-O vapor system
to demonstrate the feasibility of this approach.

The genetic algorithms have been described in detail in
many of the authors’ previous publications.[9-15] Only a
brief outline is presented here.

2. Genetic Algorithms in a Nutshell

In the natural world, populations of species evolve
through well-defined biological processes such as selection,
crossover, and mutation. One generation gives rise to the
next, where, following a Darwinian scheme, the stronger
individuals with a better fitness acquire a higher probability
of survival. In genetic algorithms, this natural selection
mechanism is mimicked in a figurative way. When it comes
to problem solving using genetic algorithms, an individual
is formed through an assembly of the probable variable
values, denoting a tentative solution. A set of such tentative
solutions constitutes the population. The mutation process
adds small probabilistic perturbations to them. The cross-

over combines two individuals and forms newer members
of the population. Normally, fitness of the individuals is
attributed to the function values they denote and the selec-
tion procedure for the subsequent generations is related to
the fitness. The procedure is repeated until convergence, as
shown schematically in Fig. 1. The most common form of
genetic algorithms employs a binary encoding and is popu-
larly known as simple genetic algorithms (SGAs).

Further details of the genetic algorithms are available
elsewhere.[3-7]

3. Pb-S-O Vapor System

This system has immense practical importance, particu-
larly in connection with the analyses of emissions from lead
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extraction and sintering units. Pyroprocessing of lead in-
volves exothermic conversion of galena concentrates (PbS)
to PbO, during which a significant amount of lead-bearing
species can end up in the atmosphere due to their high vapor
pressure. This problem is particularly significant in many
developing countries where the lead production is bound to
increase for economic reasons. For example, a recent news
item[16] shows that a major Indian lead company is pumping
in another $21 million to increase its annual production
from 35,000 tons to 85,000 tons, simply to keep up with the
domestic demands. In such a scenario, anyone with a mini-
mum environmental concern would like to know how much
of this lead would actually end up in the atmosphere, and in
what form. A thermodynamic evaluation of the Pb-S-O va-
por system would be absolutely essential to provide a quan-
titative answer.

The Pb-S-O vapor system contains a total of 20 constitu-
ents[17] identified as PbS, PbO, Pb2O2, Pb3O3, Pb4O4,
Pb5O5, Pb6O6, Pb, S, S2, S3, S4, S5, S6, S7, S8, SO, SO2,
SO3, and O2. Applying the phase rule for chemically react-
ing systems,[2] one can easily ascertain that a total of 17
independent reactions involving these constituents are re-
quired to sustain the equilibrium. Thus the system implicitly
has a total of four degrees of freedom. For any given tem-
perature and total pressure, an arbitrarily prepared gas mix-
ture containing no stoichiometric restrictions would still be
left with two degrees of freedom, and a unique solution can
only be obtained by specifying two more external restric-
tions; fixed atomic ratios or chemical potentials, for ex-
ample. The constrained chemical potential method
(CCPM),[17-21] which is specifically devised for the equi-
librium calculations of multicomponent systems obeying
the phase rule, obtains a deterministic solution by specify-
ing two chemical potentials. This technique employs an
ingenious convergence condition and has been successfully
applied earlier to compute the Pb-S-O vapor system.[17]

(Further details of CCPM are provided in the Appendix.) In
this study, the authors have recalculated the same system
using genetic algorithms to establish the applicability of
evolutionary methods in multicomponent equilibria calcu-
lations using explicit equilibrium constants. The required
thermodynamic data were taken from the previous work.[17]

The basic methodology is described below.

4. Genetic Formulation

A closed form solution for this system, as expected on
the basis of the discussions in the previous section, would
involve a simultaneous solution of the following equations:

(1) The 17 equilibrium relationships of the type:

fi ≡
pPb

m pO2

n pS2

p

pPbxSyOz

q − Ki = 0

where i = 1, 2,…, 17. The stoichiometric coefficients m, n,
p, q, x, y, z are � 0.

(2) The total pressure constraint is expressed as

f18 ≡ �
j=1

N

pj − PT = 0

where PT denotes the total pressure, pj is the partial pressure
of the jth constituent, and N denotes the total number of
species.

(3) The chemical potential constraints:

fI ≡ �l − kl = 0

where I = 19, 20; l = 1 for I = 19 and is 2 otherwise; �
denotes chemical potential, and the k term denotes the con-
straint.

A total of 20 nonlinear algebraic equations, f1 to f20,
containing 20 unknown partial pressures are thus formed,
which the authors have attempted to solve using genetic
algorithms. For this purpose they constructed a new objec-
tive function F and attempted to maximize it using the evo-
lutionary approach. The explicit form of this objective func-
tion is given as

F =
1

1 + �f 1
2 + f 2

2 + . . . + f 20
2

The maximum value of this objective function would
correspond to the minimum of the square root term in the
denominator. This, in turn, would make all the f values
zero, leading to a feasible solution of this set of 20 alge-
braic equations, which is thermodynamically known to
exist.

Fig. 2 Convergence demonstration for a typical simple genetic
algorithm run; the points in Series 1 denote the maximum fitness
values in the population, while the average fitness values are dem-
onstrated by the points in Series 2.
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All the calculations were performed in a UNIX worksta-
tion using a binary encoded genetic algorithm with an elitist
option[3] that preferentially preserves the best solution of the
previous generation. Upon convergence (i.e., F → 1), the
average and maximum fitness values of the population be-
came quite close to each other, as shown in Fig. 2.

5. Results and Discussion

The atomic fractions of the respective elements were
computed from the computed partial pressure data and the
results were plotted as various isobar lines in a number of
Gibbs triangles. The results obtained through the applica-
tions of genetic algorithms closely resemble the earlier cal-
culations[17] where the CCPM was used. Figure 3 provides
a typical comparison. The S2, SO2, Pb, and PbS isobars
shown in Fig. 4-7, respectively, are also in good agreement
with the previous calculations. The PbO isobars shown in
Fig. 8, although in general agreement with the previous
work, seem to form a closed loop, and the tendency is quite
prominent in case of the 10−3.4 isobar lines, which could not
be clearly resolved earlier through the CCPM.[17]

This tendency of forming closed loops becomes more
prominent in case of (PbO)n polymers. The Pb3O3 and
Pb6O6 isobars (Fig. 9 and 10), which were not calculated in
the earlier work,[17] were studied during the present inves-
tigation and they show a tendency of clustering of such
closed loops in various regions of the Gibbs triangles. The
adjacent regions in these loops are often so closely placed
that the genetic algorithm could not satisfactorily distin-
guish between them and due to this reason only the outer
contours of various regimes are plotted in Fig. 9 and 10. The
results, however, have a far-reaching environmental con-
sequence, as the galena sintering machines essentially op-

erate in the vicinity of the PbS-PbO pseudo binary line,
while the lead blast furnaces operate close to the PbO-Pb
region. In both cases, a comparison of Fig. 8-10 would
indicate that the polymeric lead oxides are emitted at a
much higher concentration than PbO. The lead-containing
species with higher molecular weight have the tendency
of settling in the lower layer of the atmosphere, thus posing
a higher environmental threat due to their toxicity. This
appears to be an important finding that could not be envis-
aged from the data of the previous investigation using
CCPM.

Some of the isobars, the PbS isobars shown in Fig. 7 for

Fig. 4 S2 isobars; all numbers are base 10 logarithms of PS2
(atm)

values. The rest are the same as in Fig. 3.

Fig. 3 Oxygen isobars at various temperatures and total pressure obtained by (a) CCPM and (b) genetic algorithm; all numbers are base
10 logarithms of PO2

(atm) values.
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example, show some predominantly linear regions. Since
the same trends were observed in earlier calculations using
CCPM,[17] the authors would like to take them for real. The
nonlinearity in the isobar lines arises out of the nonlinear
nature of the pertinent equilibrium relationships, and, pre-
sumably, for certain stoichiometry and species concentra-
tions, it becomes rather weak. No two isobars at the same
temperature can, however, touch or intersect each other, nor
can a single component isobar terminate or continue along
a binary axis devoid of its element, and those requirements
are satisfied by all the computed isobar lines, linear and
nonlinear alike.

6. Conclusions

This successful recalculation of the Pb-S-O vapor system
opens up an alternate strategy of computing the multicom-
ponent equilibria problems, which can now be extended to
numerous phase equilibria studies that matter from a prac-
tical consideration. Genetic algorithms perform an exhaus-
tive search, and for a highly nonlinear problem such as the
one currently at hand, the nature of the solution appears to
be more comprehensive than those obtained by the
CCPM,[17] which sometimes proceeds very slowly and of-

Fig. 5 SO2 isobars; all numbers are base 10 logarithms of PSO2

(atm) values. The rest are the same as in Fig. 3.

Fig. 6 Pb isobars; all numbers are base 10 logarithms of PPb

(atm) values. The rest are the same as in Fig. 3.

Fig. 7 PbS isobars; all numbers are base 10 logarithms of PPbS

(atm) values. The rest are the same as in Fig. 3.

Fig. 8 PbO isobars; all numbers are base 10 logarithms of PPbO

(atm) values. The rest are the same as in Fig. 1.
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ten does not resolve the entire range of the feasible solu-
tions. What the authors have performed here is essentially a
guided probabilistic search, which is more subtle and effi-
cient than some of the earlier methods propagated by
Bahn,[22] Kellogg,[23] and Rao[2] and, for that matter, does
not require any cumbersome matrix inversions such as both
the first and second order modified Newton-Raphson meth-
ods tried extensively for such problems.[24] In fact, most of
the methods detailed in the classic text of Van Zeggeren and
Storey[1] are highly sensitive to the initial guess values.
Particularly on this count the genetic algorithms would
score well above most of its competitors, as this method is

built upon the evolution of a randomized initial set of so-
lutions, where the accuracy of the initial guess values is
neither a prerequisite nor of any particular advantage.
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Appendix

Constrained Chemical Potential Method

A brief description of the CCPM is provided here in
terms of an O2 isobar in the Pb-S-O vapor system. An
analogous procedure can be adopted for calculating any
other isobars. The essential steps are as follows.

As indicated in the main text, for this system, at a con-
stant temperature T, and a total pressure PT, fixing the val-
ues of two chemical potentials would satisfy the phase rule
requirements of an invariant equilibrium. Since at a low
total pressure the fugacity and partial pressure can be con-
sidered as synonymous, one can conveniently fix the values
of pO2

and pPb and initiate the calculation with an initial
guess value of pS2

say, pS2I
. This would enable one to cal-

culate the sum of the partial pressure of the constituents
without oxygen as

�
j=1

n

Pj = �
j=1

n

fj�Kj, PPb, PS2I� (A-1)

where Pj is the partial pressure of the jth constituent, which
does not contain any oxygen, and n denotes the total number
of such constituents, Kj is the pertinent equilibrium con-
stant, and the functions on the right-hand side are obtained
from the equilibrium relationships.

Now one proceeds to determine the sum of partial pres-
sures of all the m species that contain oxygen, using the
relationship:

�
k=1

m

Pk = PT − �
j=1

n

Pj (A-2)

where Pk denotes the kth constituent containing at least one
atom of oxygen. A check for the existence of a solution
becomes necessary at this point, as no solution would exist
while

PT � �
j=1

n

Pj (A-3)

If this occurs then the initial guess values are altered until
the inequality

PT � �
j=1

n

Pj (A-4)

is satisfied.
The next step involves a redetermination of the sum of

partial pressures of species with oxygen directly from the
equilibrium relationships and is evaluated as

�
k=1

m

Pk = �
k=1

m

fk�Kk, PO2
, PPb, PS2I� (A-5)

The functions on the right-hand side are once again deter-
mined from the equilibrium relationships. The K values, as
before, denote the equilibrium constants.

Convergence requires that the values determined by Eq
A-2 and A-5 should be equal, and the partial pressure of
sulfur is now calculated as

PS2IC = �PT − �
j=1

n

Pj����1.0�PS2I� �
k=1

m

fk�Kk, PO2
, PPb, PS2I)]

(A-6)

As a criterion of convergence, it is now checked whether
the calculated value of the partial pressure of sulfur PS2IC
matches with its current guess value PS2I

. If not, then a
repetitive half interval estimation for the new value of the
sulfur partial pressure PS2N

is obtained as

PS2N = 0.5 �PS2I + PS2IC� (A-7)

Calculations now resume from step A-1 by replacing
PS2IC

with PS2N
. Upon convergence the respective atom

fractions of Pb, S, and O are determined using the calculated
partial pressure values. This essentially gives rise to one
point in a particular isobar line. The calculations are now
repeated for newer feasible values of PPb, keeping the value
of oxygen partial pressure intact.
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